Ice-breaker talk David de Laat (ICERM/MIT)

Ice-breaker talk David de Laat (ICERM/MIT)

- Thesis: Moment methods in extremal geometry (2016)

Ice-breaker talk David de Laat (ICERM/MIT)

- Thesis: Moment methods in extremal geometry (2016) Generalize techniques from combinatorial optimization for packing and energy minimization problems

Ice-breaker talk David de Laat (ICERM/MIT)

- Thesis: Moment methods in extremal geometry (2016) Generalize techniques from combinatorial optimization for packing and energy minimization problems
- Example: Sharp (with high precision numerics) relaxation for Riesz energy problems with 5 particles on S^{2} (2017)

Ice-breaker talk David de Laat (ICERM/MIT)

- Thesis: Moment methods in extremal geometry (2016) Generalize techniques from combinatorial optimization for packing and energy minimization problems
- Example: Sharp (with high precision numerics) relaxation for Riesz energy problems with 5 particles on S^{2} (2017)

Ice-breaker talk David de Laat (ICERM/MIT)

- Thesis: Moment methods in extremal geometry (2016) Generalize techniques from combinatorial optimization for packing and energy minimization problems
- Example: Sharp (with high precision numerics) relaxation for Riesz energy problems with 5 particles on S^{2} (2017)

- Thesis: Moment methods in extremal geometry (2016) Generalize techniques from combinatorial optimization for packing and energy minimization problems
- Example: Sharp (with high precision numerics) relaxation for Riesz energy problems with 5 particles on S^{2} (2017)

- Thesis: Moment methods in extremal geometry (2016) Generalize techniques from combinatorial optimization for packing and energy minimization problems
- Example: Sharp (with high precision numerics) relaxation for Riesz energy problems with 5 particles on S^{2} (2017)

- Thesis: Moment methods in extremal geometry (2016) Generalize techniques from combinatorial optimization for packing and energy minimization problems
- Example: Sharp (with high precision numerics) relaxation for Riesz energy problems with 5 particles on S^{2} (2017)

- Current problem: Try to find stronger relaxations for sphere packing (noncompact!)
- Maximize center density limsup $\operatorname{sum}_{r \rightarrow \infty}\left|P \cap B_{r}\right| / \operatorname{vol}\left(B_{r}\right)$ over sphere packings P in \mathbb{R}^{n} consisting of unit diameter spheres
- Maximize center density $\lim \sup _{r \rightarrow \infty}\left|P \cap B_{r}\right| / \operatorname{vol}\left(B_{r}\right)$ over sphere packings P in \mathbb{R}^{n} consisting of unit diameter spheres
- Cohn-Elkies bound:

$$
\inf \left\{f(0): f \in S\left(\mathbb{R}^{n}\right), \hat{f}(0)=1, \hat{f} \geq 0, f(x) \leq 0 \text { for }\|x\| \geq 1\right\}
$$

- Maximize center density $\lim \sup _{r \rightarrow \infty}\left|P \cap B_{r}\right| / \operatorname{vol}\left(B_{r}\right)$ over sphere packings P in \mathbb{R}^{n} consisting of unit diameter spheres
- Cohn-Elkies bound:

$$
\inf \left\{f(0): f \in S\left(\mathbb{R}^{n}\right), \hat{f}(0)=1, \hat{f} \geq 0, f(x) \leq 0 \text { for }\|x\| \geq 1\right\}
$$

Currently working on the following ideas:

- Maximize center density $\lim \sup _{r \rightarrow \infty}\left|P \cap B_{r}\right| / \operatorname{vol}\left(B_{r}\right)$ over sphere packings P in \mathbb{R}^{n} consisting of unit diameter spheres
- Cohn-Elkies bound:

$$
\inf \left\{f(0): f \in S\left(\mathbb{R}^{n}\right), \hat{f}(0)=1, \hat{f} \geq 0, f(x) \leq 0 \text { for }\|x\| \geq 1\right\}
$$

Currently working on the following ideas:

- Adaptation of Lasserre hierarchy to the noncompact setting
- Maximize center density lim $\sup _{r \rightarrow \infty}\left|P \cap B_{r}\right| / \operatorname{vol}\left(B_{r}\right)$ over sphere packings P in \mathbb{R}^{n} consisting of unit diameter spheres
- Cohn-Elkies bound:

$$
\inf \left\{f(0): f \in S\left(\mathbb{R}^{n}\right), \hat{f}(0)=1, \hat{f} \geq 0, f(x) \leq 0 \text { for }\|x\| \geq 1\right\}
$$

Currently working on the following ideas:

- Adaptation of Lasserre hierarchy to the noncompact setting
- Copositive formulation for sphere packing:

$$
\begin{aligned}
\inf \{f(0)+g(0): & f, g \in S\left(\mathbb{R}^{n}\right), \hat{f}(0)=1, \hat{f} \geq 0 \\
& g \text { is copositive, } f(x)+g(x) \leq 0 \text { for }\|x\| \geq 1\}
\end{aligned}
$$

- Maximize center density limsup $\operatorname{sum}_{r \rightarrow \infty}\left|P \cap B_{r}\right| / \operatorname{vol}\left(B_{r}\right)$ over sphere packings P in \mathbb{R}^{n} consisting of unit diameter spheres
- Cohn-Elkies bound:

$$
\inf \left\{f(0): f \in S\left(\mathbb{R}^{n}\right), \hat{f}(0)=1, \hat{f} \geq 0, f(x) \leq 0 \text { for }\|x\| \geq 1\right\}
$$

Currently working on the following ideas:

- Adaptation of Lasserre hierarchy to the noncompact setting
- Copositive formulation for sphere packing:

$$
\begin{aligned}
\inf \{f(0)+g(0): & f, g \in S\left(\mathbb{R}^{n}\right), \hat{f}(0)=1, \hat{f} \geq 0 \\
& g \text { is copositive, } f(x)+g(x) \leq 0 \text { for }\|x\| \geq 1\}
\end{aligned}
$$

- Three point bound (only for Lattice packings):

$$
\begin{aligned}
& \inf \left\{f(0,0): f \in S\left(\mathbb{R}^{2 n}\right), \hat{f}(0,0)=1, \hat{f} \geq 0, f \leq 0 \text { on } C_{2}\right\}^{1 / 2} \\
C_{2}= & \left\{(x, y) \in \mathbb{R}^{2 n}:\|x\|,\|y\|,\|x-y\| \in\{0\} \cup[1, \infty)\right\} \backslash\{(0,0)\}
\end{aligned}
$$

